The best AI papers of 2017

1. A Unified Approach to Interpreting Model Predictions

28 341 citations

Understanding why a model makes a certain prediction can be as crucial as the prediction's accuracy in many applications. However, the highest accuracy for large modern datasets is often achieved by complex models that even experts struggle to interpret, such as ensemble or deep learning models, creating a tension between accuracy and interpretability. In response, various methods have recently been proposed to help users interpret the predictions of complex models, but it is often unclear how these methods are related and when one method is preferable over another. To address this problem, we present a unified framework for interpreting predictions, SHAP (SHapley Additive exPlanations). SHAP assigns each feature an importance value for a particular prediction. Its novel components include: (1) the identification of a new class of additive feature importance measures, and (2) theoretical results showing there is a unique solution in this class with a set of desirable properties. The new class unifies six existing methods, notable because several recent methods in the class lack the proposed desirable properties. Based on insights from this unification, we present new methods that show improved computational performance and/or better consistency with human intuition than previous approaches.

2. Graph Attention Networks

23 609 citations

We present graph attention networks (GATs), novel neural network architectures that operate on graph-structured data, leveraging masked self-attentional layers to address the shortcomings of prior methods based on graph convolutions or their approximations. By stacking layers in which nodes are able to attend over their neighborhoods' features, we enable (implicitly) specifying different weights to different nodes in a neighborhood, without requiring any kind of costly matrix operation (such as inversion) or depending on knowing the graph structure upfront. In this way, we address several key challenges of spectral-based graph neural networks simultaneously, and make our model readily applicable to inductive as well as transductive problems. Our GAT models have achieved or matched state-of-the-art results across four established transductive and inductive graph benchmarks: the Cora, Citeseer and Pubmed citation network datasets, as well as a protein-protein interaction dataset (wherein test graphs remain unseen during training).

3. Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks

13 302 citations

We propose an algorithm for meta-learning that is model-agnostic, in the sense that it is compatible with any model trained with gradient descent and applicable to a variety of different learning problems, including classification, regression, and reinforcement learning. The goal of meta-learning is to train a model on a variety of learning tasks, such that it can solve new learning tasks using only a small number of training samples. In our approach, the parameters of the model are explicitly trained such that a small number of gradient steps with a small amount of training data from a new task will produce good generalization performance on that task. In effect, our method trains the model to be easy to fine-tune. We demonstrate that this approach leads to state-of-the-art performance on two few-shot image classification benchmarks, produces good results on few-shot regression, and accelerates fine-tuning for policy gradient reinforcement learning with neural network policies.

4. CARLA: An Open Urban Driving Simulator

6 025 citations

We introduce CARLA, an open-source simulator for autonomous driving research. CARLA has been developed from the ground up to support development, training, and validation of autonomous urban driving systems. In addition to open-source code and protocols, CARLA provides open digital assets (urban layouts, buildings, vehicles) that were created for this purpose and can be used freely. The simulation platform supports flexible specification of sensor suites and environmental conditions. We use CARLA to study the performance of three approaches to autonomous driving: a classic modular pipeline, an end-to-end model trained via imitation learning, and an end-to-end model trained via reinforcement learning. The approaches are evaluated in controlled scenarios of increasing difficulty, and their performance is examined via metrics provided by CARLA, illustrating the platform's utility for autonomous driving research. The supplementary video can be viewed at https://youtu.be/Hp8Dz-Zek2E

5. Modeling Relational Data with Graph Convolutional Networks

5 489 citations

Knowledge graphs enable a wide variety of applications, including question answering and information retrieval. Despite the great effort invested in their creation and maintenance, even the largest (e.g., Yago, DBPedia or Wikidata) remain incomplete. We introduce Relational Graph Convolutional Networks (R-GCNs) and apply them to two standard knowledge base completion tasks: Link prediction (recovery of missing facts, i.e. subject-predicate-object triples) and entity classification (recovery of missing entity attributes). R-GCNs are related to a recent class of neural networks operating on graphs, and are developed specifically to deal with the highly multi-relational data characteristic of realistic knowledge bases. We demonstrate the effectiveness of R-GCNs as a stand-alone model for entity classification. We further show that factorization models for link prediction such as DistMult can be significantly improved by enriching them with an encoder model to accumulate evidence over multiple inference steps in the relational graph, demonstrating a large improvement of 29.8% on FB15k-237 over a decoder-only baseline.

6. Multi-Agent Actor-Critic for Mixed Cooperative-Competitive Environments

5 187 citations

We explore deep reinforcement learning methods for multi-agent domains. We begin by analyzing the difficulty of traditional algorithms in the multi-agent case: Q-learning is challenged by an inherent non-stationarity of the environment, while policy gradient suffers from a variance that increases as the number of agents grows. We then present an adaptation of actor-critic methods that considers action policies of other agents and is able to successfully learn policies that require complex multi-agent coordination. Additionally, we introduce a training regimen utilizing an ensemble of policies for each agent that leads to more robust multi-agent policies. We show the strength of our approach compared to existing methods in cooperative as well as competitive scenarios, where agent populations are able to discover various physical and informational coordination strategies.

7. Explanation in Artificial Intelligence: Insights from the Social Sciences

4 757 citations

There has been a recent resurgence in the area of explainable artificial intelligence as researchers and practitioners seek to make their algorithms more understandable. Much of this research is focused on explicitly explaining decisions or actions to a human observer, and it should not be controversial to say that looking at how humans explain to each other can serve as a useful starting point for explanation in artificial intelligence. However, it is fair to say that most work in explainable artificial intelligence uses only the researchers' intuition of what constitutes a `good' explanation. There exists vast and valuable bodies of research in philosophy, psychology, and cognitive science of how people define, generate, select, evaluate, and present explanations, which argues that people employ certain cognitive biases and social expectations towards the explanation process. This paper argues that the field of explainable artificial intelligence should build on this existing research, and reviews relevant papers from philosophy, cognitive psychology/science, and social psychology, which study these topics. It draws out some important findings, and discusses ways that these can be infused with work on explainable artificial intelligence.

8. Towards A Rigorous Science of Interpretable Machine Learning

4 400 citations

As machine learning systems become ubiquitous, there has been a surge of interest in interpretable machine learning: systems that provide explanation for their outputs. These explanations are often used to qualitatively assess other criteria such as safety or non-discrimination. However, despite the interest in interpretability, there is very little consensus on what interpretable machine learning is and how it should be measured. In this position paper, we first define interpretability and describe when interpretability is needed (and when it is not). Next, we suggest a taxonomy for rigorous evaluation and expose open questions towards a more rigorous science of interpretable machine learning.

9. Deep reinforcement learning from human preferences

4 267 citations

For sophisticated reinforcement learning (RL) systems to interact usefully with real-world environments, we need to communicate complex goals to these systems. In this work, we explore goals defined in terms of (non-expert) human preferences between pairs of trajectory segments. We show that this approach can effectively solve complex RL tasks without access to the reward function, including Atari games and simulated robot locomotion, while providing feedback on less than one percent of our agent's interactions with the environment. This reduces the cost of human oversight far enough that it can be practically applied to state-of-the-art RL systems. To demonstrate the flexibility of our approach, we show that we can successfully train complex novel behaviors with about an hour of human time. These behaviors and environments are considerably more complex than any that have been previously learned from human feedback.

10. A Brief Survey of Deep Reinforcement Learning

3 278 citations

Deep reinforcement learning is poised to revolutionise the field of AI and represents a step towards building autonomous systems with a higher level understanding of the visual world. Currently, deep learning is enabling reinforcement learning to scale to problems that were previously intractable, such as learning to play video games directly from pixels. Deep reinforcement learning algorithms are also applied to robotics, allowing control policies for robots to be learned directly from camera inputs in the real world. In this survey, we begin with an introduction to the general field of reinforcement learning, then progress to the main streams of value-based and policy-based methods. Our survey will cover central algorithms in deep reinforcement learning, including the deep $Q$-network, trust region policy optimisation, and asynchronous advantage actor-critic. In parallel, we highlight the unique advantages of deep neural networks, focusing on visual understanding via reinforcement learning. To conclude, we describe several current areas of research within the field.

11. Understanding Black-box Predictions via Influence Functions

3 250 citations

How can we explain the predictions of a black-box model? In this paper, we use influence functions -- a classic technique from robust statistics -- to trace a model's prediction through the learning algorithm and back to its training data, thereby identifying training points most responsible for a given prediction. To scale up influence functions to modern machine learning settings, we develop a simple, efficient implementation that requires only oracle access to gradients and Hessian-vector products. We show that even on non-convex and non-differentiable models where the theory breaks down, approximations to influence functions can still provide valuable information. On linear models and convolutional neural networks, we demonstrate that influence functions are useful for multiple purposes: understanding model behavior, debugging models, detecting dataset errors, and even creating visually-indistinguishable training-set attacks.

12. Gradient Episodic Memory for Continual Learning

3 064 citations

One major obstacle towards AI is the poor ability of models to solve new problems quicker, and without forgetting previously acquired knowledge. To better understand this issue, we study the problem of continual learning, where the model observes, once and one by one, examples concerning a sequence of tasks. First, we propose a set of metrics to evaluate models learning over a continuum of data. These metrics characterize models not only by their test accuracy, but also in terms of their ability to transfer knowledge across tasks. Second, we propose a model for continual learning, called Gradient Episodic Memory (GEM) that alleviates forgetting, while allowing beneficial transfer of knowledge to previous tasks. Our experiments on variants of the MNIST and CIFAR-100 datasets demonstrate the strong performance of GEM when compared to the state-of-the-art.

13. An Overview of Multi-Task Learning in Deep Neural Networks

3 034 citations

Multi-task learning (MTL) has led to successes in many applications of machine learning, from natural language processing and speech recognition to computer vision and drug discovery. This article aims to give a general overview of MTL, particularly in deep neural networks. It introduces the two most common methods for MTL in Deep Learning, gives an overview of the literature, and discusses recent advances. In particular, it seeks to help ML practitioners apply MTL by shedding light on how MTL works and providing guidelines for choosing appropriate auxiliary tasks.

14. Fake News Detection on Social Media: A Data Mining Perspective

3 005 citations

Social media for news consumption is a double-edged sword. On the one hand, its low cost, easy access, and rapid dissemination of information lead people to seek out and consume news from social media. On the other hand, it enables the wide spread of "fake news", i.e., low quality news with intentionally false information. The extensive spread of fake news has the potential for extremely negative impacts on individuals and society. Therefore, fake news detection on social media has recently become an emerging research that is attracting tremendous attention. Fake news detection on social media presents unique characteristics and challenges that make existing detection algorithms from traditional news media ineffective or not applicable. First, fake news is intentionally written to mislead readers to believe false information, which makes it difficult and nontrivial to detect based on news content; therefore, we need to include auxiliary information, such as user social engagements on social media, to help make a determination. Second, exploiting this auxiliary information is challenging in and of itself as users' social engagements with fake news produce data that is big, incomplete, unstructured, and noisy. Because the issue of fake news detection on social media is both challenging and relevant, we conducted this survey to further facilitate research on the problem. In this survey, we present a comprehensive review of detecting fake news on social media, including fake news characterizations on psychology and social theories, existing algorithms from a data mining perspective, evaluation metrics and representative datasets. We also discuss related research areas, open problems, and future research directions for fake news detection on social media.

15. Unsupervised Image-to-Image Translation Networks

2 872 citations

Unsupervised image-to-image translation aims at learning a joint distribution of images in different domains by using images from the marginal distributions in individual domains. Since there exists an infinite set of joint distributions that can arrive the given marginal distributions, one could infer nothing about the joint distribution from the marginal distributions without additional assumptions. To address the problem, we make a shared-latent space assumption and propose an unsupervised image-to-image translation framework based on Coupled GANs. We compare the proposed framework with competing approaches and present high quality image translation results on various challenging unsupervised image translation tasks, including street scene image translation, animal image translation, and face image translation. We also apply the proposed framework to domain adaptation and achieve state-of-the-art performance on benchmark datasets. Code and additional results are available in https://github.com/mingyuliutw/unit .

16. FiLM: Visual Reasoning with a General Conditioning Layer

2 792 citations

We introduce a general-purpose conditioning method for neural networks called FiLM: Feature-wise Linear Modulation. FiLM layers influence neural network computation via a simple, feature-wise affine transformation based on conditioning information. We show that FiLM layers are highly effective for visual reasoning - answering image-related questions which require a multi-step, high-level process - a task which has proven difficult for standard deep learning methods that do not explicitly model reasoning. Specifically, we show on visual reasoning tasks that FiLM layers 1) halve state-of-the-art error for the CLEVR benchmark, 2) modulate features in a coherent manner, 3) are robust to ablations and architectural modifications, and 4) generalize well to challenging, new data from few examples or even zero-shot.

17. Curiosity-driven Exploration by Self-supervised Prediction

2 688 citations

In many real-world scenarios, rewards extrinsic to the agent are extremely sparse, or absent altogether. In such cases, curiosity can serve as an intrinsic reward signal to enable the agent to explore its environment and learn skills that might be useful later in its life. We formulate curiosity as the error in an agent's ability to predict the consequence of its own actions in a visual feature space learned by a self-supervised inverse dynamics model. Our formulation scales to high-dimensional continuous state spaces like images, bypasses the difficulties of directly predicting pixels, and, critically, ignores the aspects of the environment that cannot affect the agent. The proposed approach is evaluated in two environments: VizDoom and Super Mario Bros. Three broad settings are investigated: 1) sparse extrinsic reward, where curiosity allows for far fewer interactions with the environment to reach the goal; 2) exploration with no extrinsic reward, where curiosity pushes the agent to explore more efficiently; and 3) generalization to unseen scenarios (e.g. new levels of the same game) where the knowledge gained from earlier experience helps the agent explore new places much faster than starting from scratch. Demo video and code available at https://pathak22.github.io/noreward-rl/

18. Counterfactual Explanations without Opening the Black Box: Automated Decisions and the GDPR

2 677 citations

There has been much discussion of the right to explanation in the EU General Data Protection Regulation, and its existence, merits, and disadvantages. Implementing a right to explanation that opens the black box of algorithmic decision-making faces major legal and technical barriers. Explaining the functionality of complex algorithmic decision-making systems and their rationale in specific cases is a technically challenging problem. Some explanations may offer little meaningful information to data subjects, raising questions around their value. Explanations of automated decisions need not hinge on the general public understanding how algorithmic systems function. Even though such interpretability is of great importance and should be pursued, explanations can, in principle, be offered without opening the black box. Looking at explanations as a means to help a data subject act rather than merely understand, one could gauge the scope and content of explanations according to the specific goal or action they are intended to support. From the perspective of individuals affected by automated decision-making, we propose three aims for explanations: (1) to inform and help the individual understand why a particular decision was reached, (2) to provide grounds to contest the decision if the outcome is undesired, and (3) to understand what would need to change in order to receive a desired result in the future, based on the current decision-making model. We assess how each of these goals finds support in the GDPR. We suggest data controllers should offer a particular type of explanation, unconditional counterfactual explanations, to support these three aims. These counterfactual explanations describe the smallest change to the world that can be made to obtain a desirable outcome, or to arrive at the closest possible world, without needing to explain the internal logic of the system.

19. A systematic study of the class imbalance problem in convolutional neural networks

2 638 citations

In this study, we systematically investigate the impact of class imbalance on classification performance of convolutional neural networks (CNNs) and compare frequently used methods to address the issue. Class imbalance is a common problem that has been comprehensively studied in classical machine learning, yet very limited systematic research is available in the context of deep learning. In our study, we use three benchmark datasets of increasing complexity, MNIST, CIFAR-10 and ImageNet, to investigate the effects of imbalance on classification and perform an extensive comparison of several methods to address the issue: oversampling, undersampling, two-phase training, and thresholding that compensates for prior class probabilities. Our main evaluation metric is area under the receiver operating characteristic curve (ROC AUC) adjusted to multi-class tasks since overall accuracy metric is associated with notable difficulties in the context of imbalanced data. Based on results from our experiments we conclude that (i) the effect of class imbalance on classification performance is detrimental; (ii) the method of addressing class imbalance that emerged as dominant in almost all analyzed scenarios was oversampling; (iii) oversampling should be applied to the level that completely eliminates the imbalance, whereas the optimal undersampling ratio depends on the extent of imbalance; (iv) as opposed to some classical machine learning models, oversampling does not cause overfitting of CNNs; (v) thresholding should be applied to compensate for prior class probabilities when overall number of properly classified cases is of interest.

20. A Survey on Multi-Task Learning

2 631 citations

Multi-Task Learning (MTL) is a learning paradigm in machine learning and its aim is to leverage useful information contained in multiple related tasks to help improve the generalization performance of all the tasks. In this paper, we give a survey for MTL from the perspective of algorithmic modeling, applications and theoretical analyses. For algorithmic modeling, we give a definition of MTL and then classify different MTL algorithms into five categories, including feature learning approach, low-rank approach, task clustering approach, task relation learning approach and decomposition approach as well as discussing the characteristics of each approach. In order to improve the performance of learning tasks further, MTL can be combined with other learning paradigms including semi-supervised learning, active learning, unsupervised learning, reinforcement learning, multi-view learning and graphical models. When the number of tasks is large or the data dimensionality is high, we review online, parallel and distributed MTL models as well as dimensionality reduction and feature hashing to reveal their computational and storage advantages. Many real-world applications use MTL to boost their performance and we review representative works in this paper. Finally, we present theoretical analyses and discuss several future directions for MTL.

21. Learning Efficient Convolutional Networks through Network Slimming

2 624 citations

The deployment of deep convolutional neural networks (CNNs) in many real world applications is largely hindered by their high computational cost. In this paper, we propose a novel learning scheme for CNNs to simultaneously 1) reduce the model size; 2) decrease the run-time memory footprint; and 3) lower the number of computing operations, without compromising accuracy. This is achieved by enforcing channel-level sparsity in the network in a simple but effective way. Different from many existing approaches, the proposed method directly applies to modern CNN architectures, introduces minimum overhead to the training process, and requires no special software/hardware accelerators for the resulting models. We call our approach network slimming, which takes wide and large networks as input models, but during training insignificant channels are automatically identified and pruned afterwards, yielding thin and compact models with comparable accuracy. We empirically demonstrate the effectiveness of our approach with several state-of-the-art CNN models, including VGGNet, ResNet and DenseNet, on various image classification datasets. For VGGNet, a multi-pass version of network slimming gives a 20x reduction in model size and a 5x reduction in computing operations.

22. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era

2 595 citations

The success of deep learning in vision can be attributed to: (a) models with high capacity; (b) increased computational power; and (c) availability of large-scale labeled data. Since 2012, there have been significant advances in representation capabilities of the models and computational capabilities of GPUs. But the size of the biggest dataset has surprisingly remained constant. What will happen if we increase the dataset size by 10x or 100x? This paper takes a step towards clearing the clouds of mystery surrounding the relationship between `enormous data' and visual deep learning. By exploiting the JFT-300M dataset which has more than 375M noisy labels for 300M images, we investigate how the performance of current vision tasks would change if this data was used for representation learning. Our paper delivers some surprising (and some expected) findings. First, we find that the performance on vision tasks increases logarithmically based on volume of training data size. Second, we show that representation learning (or pre-training) still holds a lot of promise. One can improve performance on many vision tasks by just training a better base model. Finally, as expected, we present new state-of-the-art results for different vision tasks including image classification, object detection, semantic segmentation and human pose estimation. Our sincere hope is that this inspires vision community to not undervalue the data and develop collective efforts in building larger datasets.

23. Hindsight Experience Replay

2 527 citations

Dealing with sparse rewards is one of the biggest challenges in Reinforcement Learning (RL). We present a novel technique called Hindsight Experience Replay which allows sample-efficient learning from rewards which are sparse and binary and therefore avoid the need for complicated reward engineering. It can be combined with an arbitrary off-policy RL algorithm and may be seen as a form of implicit curriculum. We demonstrate our approach on the task of manipulating objects with a robotic arm. In particular, we run experiments on three different tasks: pushing, sliding, and pick-and-place, in each case using only binary rewards indicating whether or not the task is completed. Our ablation studies show that Hindsight Experience Replay is a crucial ingredient which makes training possible in these challenging environments. We show that our policies trained on a physics simulation can be deployed on a physical robot and successfully complete the task.

24. DeepAR: Probabilistic Forecasting with Autoregressive Recurrent Networks

2 523 citations

Probabilistic forecasting, i.e. estimating the probability distribution of a time series' future given its past, is a key enabler for optimizing business processes. In retail businesses, for example, forecasting demand is crucial for having the right inventory available at the right time at the right place. In this paper we propose DeepAR, a methodology for producing accurate probabilistic forecasts, based on training an auto regressive recurrent network model on a large number of related time series. We demonstrate how by applying deep learning techniques to forecasting, one can overcome many of the challenges faced by widely-used classical approaches to the problem. We show through extensive empirical evaluation on several real-world forecasting data sets accuracy improvements of around 15% compared to state-of-the-art methods.

25. Rainbow: Combining Improvements in Deep Reinforcement Learning

2 463 citations

The deep reinforcement learning community has made several independent improvements to the DQN algorithm. However, it is unclear which of these extensions are complementary and can be fruitfully combined. This paper examines six extensions to the DQN algorithm and empirically studies their combination. Our experiments show that the combination provides state-of-the-art performance on the Atari 2600 benchmark, both in terms of data efficiency and final performance. We also provide results from a detailed ablation study that shows the contribution of each component to overall performance.

26. Counterfactual Multi-Agent Policy Gradients

2 309 citations

Cooperative multi-agent systems can be naturally used to model many real world problems, such as network packet routing and the coordination of autonomous vehicles. There is a great need for new reinforcement learning methods that can efficiently learn decentralised policies for such systems. To this end, we propose a new multi-agent actor-critic method called counterfactual multi-agent (COMA) policy gradients. COMA uses a centralised critic to estimate the Q-function and decentralised actors to optimise the agents' policies. In addition, to address the challenges of multi-agent credit assignment, it uses a counterfactual baseline that marginalises out a single agent's action, while keeping the other agents' actions fixed. COMA also uses a critic representation that allows the counterfactual baseline to be computed efficiently in a single forward pass. We evaluate COMA in the testbed of StarCraft unit micromanagement, using a decentralised variant with significant partial observability. COMA significantly improves average performance over other multi-agent actor-critic methods in this setting, and the best performing agents are competitive with state-of-the-art centralised controllers that get access to the full state.

27. Continual Learning with Deep Generative Replay

2 304 citations

Attempts to train a comprehensive artificial intelligence capable of solving multiple tasks have been impeded by a chronic problem called catastrophic forgetting. Although simply replaying all previous data alleviates the problem, it requires large memory and even worse, often infeasible in real world applications where the access to past data is limited. Inspired by the generative nature of hippocampus as a short-term memory system in primate brain, we propose the Deep Generative Replay, a novel framework with a cooperative dual model architecture consisting of a deep generative model ("generator") and a task solving model ("solver"). With only these two models, training data for previous tasks can easily be sampled and interleaved with those for a new task. We test our methods in several sequential learning settings involving image classification tasks.

28. A Structured Self-attentive Sentence Embedding

2 241 citations

This paper proposes a new model for extracting an interpretable sentence embedding by introducing self-attention. Instead of using a vector, we use a 2-D matrix to represent the embedding, with each row of the matrix attending on a different part of the sentence. We also propose a self-attention mechanism and a special regularization term for the model. As a side effect, the embedding comes with an easy way of visualizing what specific parts of the sentence are encoded into the embedding. We evaluate our model on 3 different tasks: author profiling, sentiment classification, and textual entailment. Results show that our model yields a significant performance gain compared to other sentence embedding methods in all of the 3 tasks.

29. AirSim: High-Fidelity Visual and Physical Simulation for Autonomous Vehicles

2 219 citations

Developing and testing algorithms for autonomous vehicles in real world is an expensive and time consuming process. Also, in order to utilize recent advances in machine intelligence and deep learning we need to collect a large amount of annotated training data in a variety of conditions and environments. We present a new simulator built on Unreal Engine that offers physically and visually realistic simulations for both of these goals. Our simulator includes a physics engine that can operate at a high frequency for real-time hardware-in-the-loop (HITL) simulations with support for popular protocols (e.g. MavLink). The simulator is designed from the ground up to be extensible to accommodate new types of vehicles, hardware platforms and software protocols. In addition, the modular design enables various components to be easily usable independently in other projects. We demonstrate the simulator by first implementing a quadrotor as an autonomous vehicle and then experimentally comparing the software components with real-world flights.

30. Mixed Precision Training

2 100 citations

Deep neural networks have enabled progress in a wide variety of applications. Growing the size of the neural network typically results in improved accuracy. As model sizes grow, the memory and compute requirements for training these models also increases. We introduce a technique to train deep neural networks using half precision floating point numbers. In our technique, weights, activations and gradients are stored in IEEE half-precision format. Half-precision floating numbers have limited numerical range compared to single-precision numbers. We propose two techniques to handle this loss of information. Firstly, we recommend maintaining a single-precision copy of the weights that accumulates the gradients after each optimizer step. This single-precision copy is rounded to half-precision format during training. Secondly, we propose scaling the loss appropriately to handle the loss of information with half-precision gradients. We demonstrate that this approach works for a wide variety of models including convolution neural networks, recurrent neural networks and generative adversarial networks. This technique works for large scale models with more than 100 million parameters trained on large datasets. Using this approach, we can reduce the memory consumption of deep learning models by nearly 2x. In future processors, we can also expect a significant computation speedup using half-precision hardware units.

31. Understanding the Effective Receptive Field in Deep Convolutional Neural Networks

2 027 citations

We study characteristics of receptive fields of units in deep convolutional networks. The receptive field size is a crucial issue in many visual tasks, as the output must respond to large enough areas in the image to capture information about large objects. We introduce the notion of an effective receptive field, and show that it both has a Gaussian distribution and only occupies a fraction of the full theoretical receptive field. We analyze the effective receptive field in several architecture designs, and the effect of nonlinear activations, dropout, sub-sampling and skip connections on it. This leads to suggestions for ways to address its tendency to be too small.

32. Reluplex: An Efficient SMT Solver for Verifying Deep Neural Networks

1 984 citations

Deep neural networks have emerged as a widely used and effective means for tackling complex, real-world problems. However, a major obstacle in applying them to safety-critical systems is the great difficulty in providing formal guarantees about their behavior. We present a novel, scalable, and efficient technique for verifying properties of deep neural networks (or providing counter-examples). The technique is based on the simplex method, extended to handle the non-convex Rectified Linear Unit (ReLU) activation function, which is a crucial ingredient in many modern neural networks. The verification procedure tackles neural networks as a whole, without making any simplifying assumptions. We evaluated our technique on a prototype deep neural network implementation of the next-generation airborne collision avoidance system for unmanned aircraft (ACAS Xu). Results show that our technique can successfully prove properties of networks that are an order of magnitude larger than the largest networks verified using existing methods.

33. Mastering Chess and Shogi by Self-Play with a General Reinforcement Learning Algorithm

1 955 citations

The game of chess is the most widely-studied domain in the history of artificial intelligence. The strongest programs are based on a combination of sophisticated search techniques, domain-specific adaptations, and handcrafted evaluation functions that have been refined by human experts over several decades. In contrast, the AlphaGo Zero program recently achieved superhuman performance in the game of Go, by tabula rasa reinforcement learning from games of self-play. In this paper, we generalise this approach into a single AlphaZero algorithm that can achieve, tabula rasa, superhuman performance in many challenging domains. Starting from random play, and given no domain knowledge except the game rules, AlphaZero achieved within 24 hours a superhuman level of play in the games of chess and shogi (Japanese chess) as well as Go, and convincingly defeated a world-champion program in each case.

34. OpenNMT: Open-Source Toolkit for Neural Machine Translation

1 934 citations

We describe an open-source toolkit for neural machine translation (NMT). The toolkit prioritizes efficiency, modularity, and extensibility with the goal of supporting NMT research into model architectures, feature representations, and source modalities, while maintaining competitive performance and reasonable training requirements. The toolkit consists of modeling and translation support, as well as detailed pedagogical documentation about the underlying techniques.

35. A Comprehensive Survey of Graph Embedding: Problems, Techniques and Applications

1 894 citations

Graph is an important data representation which appears in a wide diversity of real-world scenarios. Effective graph analytics provides users a deeper understanding of what is behind the data, and thus can benefit a lot of useful applications such as node classification, node recommendation, link prediction, etc. However, most graph analytics methods suffer the high computation and space cost. Graph embedding is an effective yet efficient way to solve the graph analytics problem. It converts the graph data into a low dimensional space in which the graph structural information and graph properties are maximally preserved. In this survey, we conduct a comprehensive review of the literature in graph embedding. We first introduce the formal definition of graph embedding as well as the related concepts. After that, we propose two taxonomies of graph embedding which correspond to what challenges exist in different graph embedding problem settings and how the existing work address these challenges in their solutions. Finally, we summarize the applications that graph embedding enables and suggest four promising future research directions in terms of computation efficiency, problem settings, techniques and application scenarios.

36. Benchmarking Single Image Dehazing and Beyond

1 883 citations

We present a comprehensive study and evaluation of existing single image dehazing algorithms, using a new large-scale benchmark consisting of both synthetic and real-world hazy images, called REalistic Single Image DEhazing (RESIDE). RESIDE highlights diverse data sources and image contents, and is divided into five subsets, each serving different training or evaluation purposes. We further provide a rich variety of criteria for dehazing algorithm evaluation, ranging from full-reference metrics, to no-reference metrics, to subjective evaluation and the novel task-driven evaluation. Experiments on RESIDE shed light on the comparisons and limitations of state-of-the-art dehazing algorithms, and suggest promising future directions.

37. Memory Aware Synapses: Learning what (not) to forget

1 827 citations

Humans can learn in a continuous manner. Old rarely utilized knowledge can be overwritten by new incoming information while important, frequently used knowledge is prevented from being erased. In artificial learning systems, lifelong learning so far has focused mainly on accumulating knowledge over tasks and overcoming catastrophic forgetting. In this paper, we argue that, given the limited model capacity and the unlimited new information to be learned, knowledge has to be preserved or erased selectively. Inspired by neuroplasticity, we propose a novel approach for lifelong learning, coined Memory Aware Synapses (MAS). It computes the importance of the parameters of a neural network in an unsupervised and online manner. Given a new sample which is fed to the network, MAS accumulates an importance measure for each parameter of the network, based on how sensitive the predicted output function is to a change in this parameter. When learning a new task, changes to important parameters can then be penalized, effectively preventing important knowledge related to previous tasks from being overwritten. Further, we show an interesting connection between a local version of our method and Hebb's rule,which is a model for the learning process in the brain. We test our method on a sequence of object recognition tasks and on the challenging problem of learning an embedding for predicting $<$subject, predicate, object$>$ triplets. We show state-of-the-art performance and, for the first time, the ability to adapt the importance of the parameters based on unlabeled data towards what the network needs (not) to forget, which may vary depending on test conditions.

38. Deep Learning for Sensor-based Activity Recognition: A Survey

1 729 citations

Sensor-based activity recognition seeks the profound high-level knowledge about human activities from multitudes of low-level sensor readings. Conventional pattern recognition approaches have made tremendous progress in the past years. However, those methods often heavily rely on heuristic hand-crafted feature extraction, which could hinder their generalization performance. Additionally, existing methods are undermined for unsupervised and incremental learning tasks. Recently, the recent advancement of deep learning makes it possible to perform automatic high-level feature extraction thus achieves promising performance in many areas. Since then, deep learning based methods have been widely adopted for the sensor-based activity recognition tasks. This paper surveys the recent advance of deep learning based sensor-based activity recognition. We summarize existing literature from three aspects: sensor modality, deep model, and application. We also present detailed insights on existing work and propose grand challenges for future research.

39. Large-Scale Evolution of Image Classifiers

1 713 citations

Neural networks have proven effective at solving difficult problems but designing their architectures can be challenging, even for image classification problems alone. Our goal is to minimize human participation, so we employ evolutionary algorithms to discover such networks automatically. Despite significant computational requirements, we show that it is now possible to evolve models with accuracies within the range of those published in the last year. Specifically, we employ simple evolutionary techniques at unprecedented scales to discover models for the CIFAR-10 and CIFAR-100 datasets, starting from trivial initial conditions and reaching accuracies of 94.6% (95.6% for ensemble) and 77.0%, respectively. To do this, we use novel and intuitive mutation operators that navigate large search spaces; we stress that no human participation is required once evolution starts and that the output is a fully-trained model. Throughout this work, we place special emphasis on the repeatability of results, the variability in the outcomes and the computational requirements.

40. A Distributional Perspective on Reinforcement Learning

1 676 citations

In this paper we argue for the fundamental importance of the value distribution: the distribution of the random return received by a reinforcement learning agent. This is in contrast to the common approach to reinforcement learning which models the expectation of this return, or value. Although there is an established body of literature studying the value distribution, thus far it has always been used for a specific purpose such as implementing risk-aware behaviour. We begin with theoretical results in both the policy evaluation and control settings, exposing a significant distributional instability in the latter. We then use the distributional perspective to design a new algorithm which applies Bellman's equation to the learning of approximate value distributions. We evaluate our algorithm using the suite of games from the Arcade Learning Environment. We obtain both state-of-the-art results and anecdotal evidence demonstrating the importance of the value distribution in approximate reinforcement learning. Finally, we combine theoretical and empirical evidence to highlight the ways in which the value distribution impacts learning in the approximate setting.

41. Network Dissection: Quantifying Interpretability of Deep Visual Representations

1 657 citations

We propose a general framework called Network Dissection for quantifying the interpretability of latent representations of CNNs by evaluating the alignment between individual hidden units and a set of semantic concepts. Given any CNN model, the proposed method draws on a broad data set of visual concepts to score the semantics of hidden units at each intermediate convolutional layer. The units with semantics are given labels across a range of objects, parts, scenes, textures, materials, and colors. We use the proposed method to test the hypothesis that interpretability of units is equivalent to random linear combinations of units, then we apply our method to compare the latent representations of various networks when trained to solve different supervised and self-supervised training tasks. We further analyze the effect of training iterations, compare networks trained with different initializations, examine the impact of network depth and width, and measure the effect of dropout and batch normalization on the interpretability of deep visual representations. We demonstrate that the proposed method can shed light on characteristics of CNN models and training methods that go beyond measurements of their discriminative power.

42. Evolution Strategies as a Scalable Alternative to Reinforcement Learning

1 642 citations

We explore the use of Evolution Strategies (ES), a class of black box optimization algorithms, as an alternative to popular MDP-based RL techniques such as Q-learning and Policy Gradients. Experiments on MuJoCo and Atari show that ES is a viable solution strategy that scales extremely well with the number of CPUs available: By using a novel communication strategy based on common random numbers, our ES implementation only needs to communicate scalars, making it possible to scale to over a thousand parallel workers. This allows us to solve 3D humanoid walking in 10 minutes and obtain competitive results on most Atari games after one hour of training. In addition, we highlight several advantages of ES as a black box optimization technique: it is invariant to action frequency and delayed rewards, tolerant of extremely long horizons, and does not need temporal discounting or value function approximation.

43. Interpretable Explanations of Black Boxes by Meaningful Perturbation

1 609 citations

As machine learning algorithms are increasingly applied to high impact yet high risk tasks, such as medical diagnosis or autonomous driving, it is critical that researchers can explain how such algorithms arrived at their predictions. In recent years, a number of image saliency methods have been developed to summarize where highly complex neural networks "look" in an image for evidence for their predictions. However, these techniques are limited by their heuristic nature and architectural constraints. In this paper, we make two main contributions: First, we propose a general framework for learning different kinds of explanations for any black box algorithm. Second, we specialise the framework to find the part of an image most responsible for a classifier decision. Unlike previous works, our method is model-agnostic and testable because it is grounded in explicit and interpretable image perturbations.

44. Provable defenses against adversarial examples via the convex outer adversarial polytope

1 558 citations

We propose a method to learn deep ReLU-based classifiers that are provably robust against norm-bounded adversarial perturbations on the training data. For previously unseen examples, the approach is guaranteed to detect all adversarial examples, though it may flag some non-adversarial examples as well. The basic idea is to consider a convex outer approximation of the set of activations reachable through a norm-bounded perturbation, and we develop a robust optimization procedure that minimizes the worst case loss over this outer region (via a linear program). Crucially, we show that the dual problem to this linear program can be represented itself as a deep network similar to the backpropagation network, leading to very efficient optimization approaches that produce guaranteed bounds on the robust loss. The end result is that by executing a few more forward and backward passes through a slightly modified version of the original network (though possibly with much larger batch sizes), we can learn a classifier that is provably robust to any norm-bounded adversarial attack. We illustrate the approach on a number of tasks to train classifiers with robust adversarial guarantees (e.g. for MNIST, we produce a convolutional classifier that provably has less than 5.8% test error for any adversarial attack with bounded $\ell_\infty$ norm less than $\epsilon = 0.1$), and code for all experiments in the paper is available at https://github.com/locuslab/convex_adversarial.

45. Vision-and-Language Navigation: Interpreting visually-grounded navigation instructions in real environments

1 523 citations

A robot that can carry out a natural-language instruction has been a dream since before the Jetsons cartoon series imagined a life of leisure mediated by a fleet of attentive robot helpers. It is a dream that remains stubbornly distant. However, recent advances in vision and language methods have made incredible progress in closely related areas. This is significant because a robot interpreting a natural-language navigation instruction on the basis of what it sees is carrying out a vision and language process that is similar to Visual Question Answering. Both tasks can be interpreted as visually grounded sequence-to-sequence translation problems, and many of the same methods are applicable. To enable and encourage the application of vision and language methods to the problem of interpreting visually-grounded navigation instructions, we present the Matterport3D Simulator -- a large-scale reinforcement learning environment based on real imagery. Using this simulator, which can in future support a range of embodied vision and language tasks, we provide the first benchmark dataset for visually-grounded natural language navigation in real buildings -- the Room-to-Room (R2R) dataset.

46. RACE: Large-scale ReAding Comprehension Dataset From Examinations

1 499 citations

We present RACE, a new dataset for benchmark evaluation of methods in the reading comprehension task. Collected from the English exams for middle and high school Chinese students in the age range between 12 to 18, RACE consists of near 28,000 passages and near 100,000 questions generated by human experts (English instructors), and covers a variety of topics which are carefully designed for evaluating the students' ability in understanding and reasoning. In particular, the proportion of questions that requires reasoning is much larger in RACE than that in other benchmark datasets for reading comprehension, and there is a significant gap between the performance of the state-of-the-art models (43%) and the ceiling human performance (95%). We hope this new dataset can serve as a valuable resource for research and evaluation in machine comprehension. The dataset is freely available at http://www.cs.cmu.edu/~glai1/data/race/ and the code is available at https://github.com/qizhex/RACE_AR_baselines.

47. Learning to Plan Chemical Syntheses

1 480 citations

From medicines to materials, small organic molecules are indispensable for human well-being. To plan their syntheses, chemists employ a problem solving technique called retrosynthesis. In retrosynthesis, target molecules are recursively transformed into increasingly simpler precursor compounds until a set of readily available starting materials is obtained. Computer-aided retrosynthesis would be a highly valuable tool, however, past approaches were slow and provided results of unsatisfactory quality. Here, we employ Monte Carlo Tree Search (MCTS) to efficiently discover retrosynthetic routes. MCTS was combined with an expansion policy network that guides the search, and an "in-scope" filter network to pre-select the most promising retrosynthetic steps. These deep neural networks were trained on 12 million reactions, which represents essentially all reactions ever published in organic chemistry. Our system solves almost twice as many molecules and is 30 times faster in comparison to the traditional search method based on extracted rules and hand-coded heuristics. Finally after a 60 year history of computer-aided synthesis planning, chemists can no longer distinguish between routes generated by a computer system and real routes taken from the scientific literature. We anticipate that our method will accelerate drug and materials discovery by assisting chemists to plan better syntheses faster, and by enabling fully automated robot synthesis.

48. Reinforcement Learning with Deep Energy-Based Policies

1 473 citations

We propose a method for learning expressive energy-based policies for continuous states and actions, which has been feasible only in tabular domains before. We apply our method to learning maximum entropy policies, resulting into a new algorithm, called soft Q-learning, that expresses the optimal policy via a Boltzmann distribution. We use the recently proposed amortized Stein variational gradient descent to learn a stochastic sampling network that approximates samples from this distribution. The benefits of the proposed algorithm include improved exploration and compositionality that allows transferring skills between tasks, which we confirm in simulated experiments with swimming and walking robots. We also draw a connection to actor-critic methods, which can be viewed performing approximate inference on the corresponding energy-based model.

49. Poincar\'e Embeddings for Learning Hierarchical Representations

1 463 citations

Representation learning has become an invaluable approach for learning from symbolic data such as text and graphs. However, while complex symbolic datasets often exhibit a latent hierarchical structure, state-of-the-art methods typically learn embeddings in Euclidean vector spaces, which do not account for this property. For this purpose, we introduce a new approach for learning hierarchical representations of symbolic data by embedding them into hyperbolic space -- or more precisely into an n-dimensional Poincar\'e ball. Due to the underlying hyperbolic geometry, this allows us to learn parsimonious representations of symbolic data by simultaneously capturing hierarchy and similarity. We introduce an efficient algorithm to learn the embeddings based on Riemannian optimization and show experimentally that Poincar\'e embeddings outperform Euclidean embeddings significantly on data with latent hierarchies, both in terms of representation capacity and in terms of generalization ability.

50. Ray: A Distributed Framework for Emerging AI Applications

1 456 citations

The next generation of AI applications will continuously interact with the environment and learn from these interactions. These applications impose new and demanding systems requirements, both in terms of performance and flexibility. In this paper, we consider these requirements and present Ray---a distributed system to address them. Ray implements a unified interface that can express both task-parallel and actor-based computations, supported by a single dynamic execution engine. To meet the performance requirements, Ray employs a distributed scheduler and a distributed and fault-tolerant store to manage the system's control state. In our experiments, we demonstrate scaling beyond 1.8 million tasks per second and better performance than existing specialized systems for several challenging reinforcement learning applications.

51. DeepTest: Automated Testing of Deep-Neural-Network-driven Autonomous Cars

1 428 citations

Recent advances in Deep Neural Networks (DNNs) have led to the development of DNN-driven autonomous cars that, using sensors like camera, LiDAR, etc., can drive without any human intervention. Most major manufacturers including Tesla, GM, Ford, BMW, and Waymo/Google are working on building and testing different types of autonomous vehicles. The lawmakers of several US states including California, Texas, and New York have passed new legislation to fast-track the process of testing and deployment of autonomous vehicles on their roads. However, despite their spectacular progress, DNNs, just like traditional software, often demonstrate incorrect or unexpected corner case behaviors that can lead to potentially fatal collisions. Several such real-world accidents involving autonomous cars have already happened including one which resulted in a fatality. Most existing testing techniques for DNN-driven vehicles are heavily dependent on the manual collection of test data under different driving conditions which become prohibitively expensive as the number of test conditions increases. In this paper, we design, implement and evaluate DeepTest, a systematic testing tool for automatically detecting erroneous behaviors of DNN-driven vehicles that can potentially lead to fatal crashes. First, our tool is designed to automatically generated test cases leveraging real-world changes in driving conditions like rain, fog, lighting conditions, etc. DeepTest systematically explores different parts of the DNN logic by generating test inputs that maximize the numbers of activated neurons. DeepTest found thousands of erroneous behaviors under different realistic driving conditions (e.g., blurring, rain, fog, etc.) many of which lead to potentially fatal crashes in three top performing DNNs in the Udacity self-driving car challenge.

52. Seq2SQL: Generating Structured Queries from Natural Language using Reinforcement Learning

1 371 citations

A significant amount of the world's knowledge is stored in relational databases. However, the ability for users to retrieve facts from a database is limited due to a lack of understanding of query languages such as SQL. We propose Seq2SQL, a deep neural network for translating natural language questions to corresponding SQL queries. Our model leverages the structure of SQL queries to significantly reduce the output space of generated queries. Moreover, we use rewards from in-the-loop query execution over the database to learn a policy to generate unordered parts of the query, which we show are less suitable for optimization via cross entropy loss. In addition, we will publish WikiSQL, a dataset of 80654 hand-annotated examples of questions and SQL queries distributed across 24241 tables from Wikipedia. This dataset is required to train our model and is an order of magnitude larger than comparable datasets. By applying policy-based reinforcement learning with a query execution environment to WikiSQL, our model Seq2SQL outperforms attentional sequence to sequence models, improving execution accuracy from 35.9% to 59.4% and logical form accuracy from 23.4% to 48.3%.

53. A Review on Deep Learning Techniques Applied to Semantic Segmentation

1 343 citations

Image semantic segmentation is more and more being of interest for computer vision and machine learning researchers. Many applications on the rise need accurate and efficient segmentation mechanisms: autonomous driving, indoor navigation, and even virtual or augmented reality systems to name a few. This demand coincides with the rise of deep learning approaches in almost every field or application target related to computer vision, including semantic segmentation or scene understanding. This paper provides a review on deep learning methods for semantic segmentation applied to various application areas. Firstly, we describe the terminology of this field as well as mandatory background concepts. Next, the main datasets and challenges are exposed to help researchers decide which are the ones that best suit their needs and their targets. Then, existing methods are reviewed, highlighting their contributions and their significance in the field. Finally, quantitative results are given for the described methods and the datasets in which they were evaluated, following up with a discussion of the results. At last, we point out a set of promising future works and draw our own conclusions about the state of the art of semantic segmentation using deep learning techniques.

54. Explainable Artificial Intelligence: Understanding, Visualizing and Interpreting Deep Learning Models

1 311 citations

With the availability of large databases and recent improvements in deep learning methodology, the performance of AI systems is reaching or even exceeding the human level on an increasing number of complex tasks. Impressive examples of this development can be found in domains such as image classification, sentiment analysis, speech understanding or strategic game playing. However, because of their nested non-linear structure, these highly successful machine learning and artificial intelligence models are usually applied in a black box manner, i.e., no information is provided about what exactly makes them arrive at their predictions. Since this lack of transparency can be a major drawback, e.g., in medical applications, the development of methods for visualizing, explaining and interpreting deep learning models has recently attracted increasing attention. This paper summarizes recent developments in this field and makes a plea for more interpretability in artificial intelligence. Furthermore, it presents two approaches to explaining predictions of deep learning models, one method which computes the sensitivity of the prediction with respect to changes in the input and one approach which meaningfully decomposes the decision in terms of the input variables. These methods are evaluated on three classification tasks.

55. AI2-THOR: An Interactive 3D Environment for Visual AI

1 272 citations

We introduce The House Of inteRactions (THOR), a framework for visual AI research, available at http://ai2thor.allenai.org. AI2-THOR consists of near photo-realistic 3D indoor scenes, where AI agents can navigate in the scenes and interact with objects to perform tasks. AI2-THOR enables research in many different domains including but not limited to deep reinforcement learning, imitation learning, learning by interaction, planning, visual question answering, unsupervised representation learning, object detection and segmentation, and learning models of cognition. The goal of AI2-THOR is to facilitate building visually intelligent models and push the research forward in this domain.

56. Learning Complex Dexterous Manipulation with Deep Reinforcement Learning and Demonstrations

1 244 citations

Dexterous multi-fingered hands are extremely versatile and provide a generic way to perform a multitude of tasks in human-centric environments. However, effectively controlling them remains challenging due to their high dimensionality and large number of potential contacts. Deep reinforcement learning (DRL) provides a model-agnostic approach to control complex dynamical systems, but has not been shown to scale to high-dimensional dexterous manipulation. Furthermore, deployment of DRL on physical systems remains challenging due to sample inefficiency. Consequently, the success of DRL in robotics has thus far been limited to simpler manipulators and tasks. In this work, we show that model-free DRL can effectively scale up to complex manipulation tasks with a high-dimensional 24-DoF hand, and solve them from scratch in simulated experiments. Furthermore, with the use of a small number of human demonstrations, the sample complexity can be significantly reduced, which enables learning with sample sizes equivalent to a few hours of robot experience. The use of demonstrations result in policies that exhibit very natural movements and, surprisingly, are also substantially more robust.

57. Hidden Physics Models: Machine Learning of Nonlinear Partial Differential Equations

1 226 citations

While there is currently a lot of enthusiasm about "big data", useful data is usually "small" and expensive to acquire. In this paper, we present a new paradigm of learning partial differential equations from {\em small} data. In particular, we introduce \emph{hidden physics models}, which are essentially data-efficient learning machines capable of leveraging the underlying laws of physics, expressed by time dependent and nonlinear partial differential equations, to extract patterns from high-dimensional data generated from experiments. The proposed methodology may be applied to the problem of learning, system identification, or data-driven discovery of partial differential equations. Our framework relies on Gaussian processes, a powerful tool for probabilistic inference over functions, that enables us to strike a balance between model complexity and data fitting. The effectiveness of the proposed approach is demonstrated through a variety of canonical problems, spanning a number of scientific domains, including the Navier-Stokes, Schr\"odinger, Kuramoto-Sivashinsky, and time dependent linear fractional equations. The methodology provides a promising new direction for harnessing the long-standing developments of classical methods in applied mathematics and mathematical physics to design learning machines with the ability to operate in complex domains without requiring large quantities of data.

58. Value-Decomposition Networks For Cooperative Multi-Agent Learning

1 175 citations

We study the problem of cooperative multi-agent reinforcement learning with a single joint reward signal. This class of learning problems is difficult because of the often large combined action and observation spaces. In the fully centralized and decentralized approaches, we find the problem of spurious rewards and a phenomenon we call the "lazy agent" problem, which arises due to partial observability. We address these problems by training individual agents with a novel value decomposition network architecture, which learns to decompose the team value function into agent-wise value functions. We perform an experimental evaluation across a range of partially-observable multi-agent domains and show that learning such value-decompositions leads to superior results, in particular when combined with weight sharing, role information and information channels.

59. StackGAN++: Realistic Image Synthesis with Stacked Generative Adversarial Networks

1 153 citations

Although Generative Adversarial Networks (GANs) have shown remarkable success in various tasks, they still face challenges in generating high quality images. In this paper, we propose Stacked Generative Adversarial Networks (StackGAN) aiming at generating high-resolution photo-realistic images. First, we propose a two-stage generative adversarial network architecture, StackGAN-v1, for text-to-image synthesis. The Stage-I GAN sketches the primitive shape and colors of the object based on given text description, yielding low-resolution images. The Stage-II GAN takes Stage-I results and text descriptions as inputs, and generates high-resolution images with photo-realistic details. Second, an advanced multi-stage generative adversarial network architecture, StackGAN-v2, is proposed for both conditional and unconditional generative tasks. Our StackGAN-v2 consists of multiple generators and discriminators in a tree-like structure; images at multiple scales corresponding to the same scene are generated from different branches of the tree. StackGAN-v2 shows more stable training behavior than StackGAN-v1 by jointly approximating multiple distributions. Extensive experiments demonstrate that the proposed stacked generative adversarial networks significantly outperform other state-of-the-art methods in generating photo-realistic images.

60. Unsupervised Machine Translation Using Monolingual Corpora Only

1 126 citations

Machine translation has recently achieved impressive performance thanks to recent advances in deep learning and the availability of large-scale parallel corpora. There have been numerous attempts to extend these successes to low-resource language pairs, yet requiring tens of thousands of parallel sentences. In this work, we take this research direction to the extreme and investigate whether it is possible to learn to translate even without any parallel data. We propose a model that takes sentences from monolingual corpora in two different languages and maps them into the same latent space. By learning to reconstruct in both languages from this shared feature space, the model effectively learns to translate without using any labeled data. We demonstrate our model on two widely used datasets and two language pairs, reporting BLEU scores of 32.8 and 15.1 on the Multi30k and WMT English-French datasets, without using even a single parallel sentence at training time.

61. Deep Reinforcement Learning for De-Novo Drug Design

1 122 citations

We propose a novel computational strategy for de novo design of molecules with desired properties termed ReLeaSE (Reinforcement Learning for Structural Evolution). Based on deep and reinforcement learning approaches, ReLeaSE integrates two deep neural networks - generative and predictive - that are trained separately but employed jointly to generate novel targeted chemical libraries. ReLeaSE employs simple representation of molecules by their SMILES strings only. Generative models are trained with stack-augmented memory network to produce chemically feasible SMILES strings, and predictive models are derived to forecast the desired properties of the de novo generated compounds. In the first phase of the method, generative and predictive models are trained separately with a supervised learning algorithm. In the second phase, both models are trained jointly with the reinforcement learning approach to bias the generation of new chemical structures towards those with the desired physical and/or biological properties. In the proof-of-concept study, we have employed the ReLeaSE method to design chemical libraries with a bias toward structural complexity or biased toward compounds with either maximal, minimal, or specific range of physical properties such as melting point or hydrophobicity, as well as to develop novel putative inhibitors of JAK2. The approach proposed herein can find a general use for generating targeted chemical libraries of novel compounds optimized for either a single desired property or multiple properties.

62. Molecular De Novo Design through Deep Reinforcement Learning

1 121 citations

This work introduces a method to tune a sequence-based generative model for molecular de novo design that through augmented episodic likelihood can learn to generate structures with certain specified desirable properties. We demonstrate how this model can execute a range of tasks such as generating analogues to a query structure and generating compounds predicted to be active against a biological target. As a proof of principle, the model is first trained to generate molecules that do not contain sulphur. As a second example, the model is trained to generate analogues to the drug Celecoxib, a technique that could be used for scaffold hopping or library expansion starting from a single molecule. Finally, when tuning the model towards generating compounds predicted to be active against the dopamine receptor type 2, the model generates structures of which more than 95% are predicted to be active, including experimentally confirmed actives that have not been included in either the generative model nor the activity prediction model.

63. Incremental Network Quantization: Towards Lossless CNNs with Low-Precision Weights

1 098 citations

This paper presents incremental network quantization (INQ), a novel method, targeting to efficiently convert any pre-trained full-precision convolutional neural network (CNN) model into a low-precision version whose weights are constrained to be either powers of two or zero. Unlike existing methods which are struggled in noticeable accuracy loss, our INQ has the potential to resolve this issue, as benefiting from two innovations. On one hand, we introduce three interdependent operations, namely weight partition, group-wise quantization and re-training. A well-proven measure is employed to divide the weights in each layer of a pre-trained CNN model into two disjoint groups. The weights in the first group are responsible to form a low-precision base, thus they are quantized by a variable-length encoding method. The weights in the other group are responsible to compensate for the accuracy loss from the quantization, thus they are the ones to be re-trained. On the other hand, these three operations are repeated on the latest re-trained group in an iterative manner until all the weights are converted into low-precision ones, acting as an incremental network quantization and accuracy enhancement procedure. Extensive experiments on the ImageNet classification task using almost all known deep CNN architectures including AlexNet, VGG-16, GoogleNet and ResNets well testify the efficacy of the proposed method. Specifically, at 5-bit quantization, our models have improved accuracy than the 32-bit floating-point references. Taking ResNet-18 as an example, we further show that our quantized models with 4-bit, 3-bit and 2-bit ternary weights have improved or very similar accuracy against its 32-bit floating-point baseline. Besides, impressive results with the combination of network pruning and INQ are also reported. The code is available at https://github.com/Zhouaojun/Incremental-Network-Quantization.

64. OptNet: Differentiable Optimization as a Layer in Neural Networks

1 095 citations

This paper presents OptNet, a network architecture that integrates optimization problems (here, specifically in the form of quadratic programs) as individual layers in larger end-to-end trainable deep networks. These layers encode constraints and complex dependencies between the hidden states that traditional convolutional and fully-connected layers often cannot capture. We explore the foundations for such an architecture: we show how techniques from sensitivity analysis, bilevel optimization, and implicit differentiation can be used to exactly differentiate through these layers and with respect to layer parameters; we develop a highly efficient solver for these layers that exploits fast GPU-based batch solves within a primal-dual interior point method, and which provides backpropagation gradients with virtually no additional cost on top of the solve; and we highlight the application of these approaches in several problems. In one notable example, the method is learns to play mini-Sudoku (4x4) given just input and output games, with no a-priori information about the rules of the game; this highlights the ability of OptNet to learn hard constraints better than other neural architectures.

65. Physics Informed Deep Learning (Part I): Data-driven Solutions of Nonlinear Partial Differential Equations

1 058 citations

We introduce physics informed neural networks -- neural networks that are trained to solve supervised learning tasks while respecting any given law of physics described by general nonlinear partial differential equations. In this two part treatise, we present our developments in the context of solving two main classes of problems: data-driven solution and data-driven discovery of partial differential equations. Depending on the nature and arrangement of the available data, we devise two distinct classes of algorithms, namely continuous time and discrete time models. The resulting neural networks form a new class of data-efficient universal function approximators that naturally encode any underlying physical laws as prior information. In this first part, we demonstrate how these networks can be used to infer solutions to partial differential equations, and obtain physics-informed surrogate models that are fully differentiable with respect to all input coordinates and free parameters.

66. Interactive Attention Networks for Aspect-Level Sentiment Classification

1 055 citations

Aspect-level sentiment classification aims at identifying the sentiment polarity of specific target in its context. Previous approaches have realized the importance of targets in sentiment classification and developed various methods with the goal of precisely modeling their contexts via generating target-specific representations. However, these studies always ignore the separate modeling of targets. In this paper, we argue that both targets and contexts deserve special treatment and need to be learned their own representations via interactive learning. Then, we propose the interactive attention networks (IAN) to interactively learn attentions in the contexts and targets, and generate the representations for targets and contexts separately. With this design, the IAN model can well represent a target and its collocative context, which is helpful to sentiment classification. Experimental results on SemEval 2014 Datasets demonstrate the effectiveness of our model.

67. Neural Network Dynamics for Model-Based Deep Reinforcement Learning with Model-Free Fine-Tuning

1 033 citations

Model-free deep reinforcement learning algorithms have been shown to be capable of learning a wide range of robotic skills, but typically require a very large number of samples to achieve good performance. Model-based algorithms, in principle, can provide for much more efficient learning, but have proven difficult to extend to expressive, high-capacity models such as deep neural networks. In this work, we demonstrate that medium-sized neural network models can in fact be combined with model predictive control (MPC) to achieve excellent sample complexity in a model-based reinforcement learning algorithm, producing stable and plausible gaits to accomplish various complex locomotion tasks. We also propose using deep neural network dynamics models to initialize a model-free learner, in order to combine the sample efficiency of model-based approaches with the high task-specific performance of model-free methods. We empirically demonstrate on MuJoCo locomotion tasks that our pure model-based approach trained on just random action data can follow arbitrary trajectories with excellent sample efficiency, and that our hybrid algorithm can accelerate model-free learning on high-speed benchmark tasks, achieving sample efficiency gains of 3-5x on swimmer, cheetah, hopper, and ant agents. Videos can be found at https://sites.google.com/view/mbmf

68. Men Also Like Shopping: Reducing Gender Bias Amplification using Corpus-level Constraints

1 029 citations

Language is increasingly being used to define rich visual recognition problems with supporting image collections sourced from the web. Structured prediction models are used in these tasks to take advantage of correlations between co-occurring labels and visual input but risk inadvertently encoding social biases found in web corpora. In this work, we study data and models associated with multilabel object classification and visual semantic role labeling. We find that (a) datasets for these tasks contain significant gender bias and (b) models trained on these datasets further amplify existing bias. For example, the activity cooking is over 33% more likely to involve females than males in a training set, and a trained model further amplifies the disparity to 68% at test time. We propose to inject corpus-level constraints for calibrating existing structured prediction models and design an algorithm based on Lagrangian relaxation for collective inference. Our method results in almost no performance loss for the underlying recognition task but decreases the magnitude of bias amplification by 47.5% and 40.5% for multilabel classification and visual semantic role labeling, respectively.

69. Toward Controlled Generation of Text

1 013 citations

Generic generation and manipulation of text is challenging and has limited success compared to recent deep generative modeling in visual domain. This paper aims at generating plausible natural language sentences, whose attributes are dynamically controlled by learning disentangled latent representations with designated semantics. We propose a new neural generative model which combines variational auto-encoders and holistic attribute discriminators for effective imposition of semantic structures. With differentiable approximation to discrete text samples, explicit constraints on independent attribute controls, and efficient collaborative learning of generator and discriminators, our model learns highly interpretable representations from even only word annotations, and produces realistic sentences with desired attributes. Quantitative evaluation validates the accuracy of sentence and attribute generation.

70. On Detecting Adversarial Perturbations

997 citations

Machine learning and deep learning in particular has advanced tremendously on perceptual tasks in recent years. However, it remains vulnerable against adversarial perturbations of the input that have been crafted specifically to fool the system while being quasi-imperceptible to a human. In this work, we propose to augment deep neural networks with a small "detector" subnetwork which is trained on the binary classification task of distinguishing genuine data from data containing adversarial perturbations. Our method is orthogonal to prior work on addressing adversarial perturbations, which has mostly focused on making the classification network itself more robust. We show empirically that adversarial perturbations can be detected surprisingly well even though they are quasi-imperceptible to humans. Moreover, while the detectors have been trained to detect only a specific adversary, they generalize to similar and weaker adversaries. In addition, we propose an adversarial attack that fools both the classifier and the detector and a novel training procedure for the detector that counteracts this attack.

71. Photographic Image Synthesis with Cascaded Refinement Networks

983 citations

We present an approach to synthesizing photographic images conditioned on semantic layouts. Given a semantic label map, our approach produces an image with photographic appearance that conforms to the input layout. The approach thus functions as a rendering engine that takes a two-dimensional semantic specification of the scene and produces a corresponding photographic image. Unlike recent and contemporaneous work, our approach does not rely on adversarial training. We show that photographic images can be synthesized from semantic layouts by a single feedforward network with appropriate structure, trained end-to-end with a direct regression objective. The presented approach scales seamlessly to high resolutions; we demonstrate this by synthesizing photographic images at 2-megapixel resolution, the full resolution of our training data. Extensive perceptual experiments on datasets of outdoor and indoor scenes demonstrate that images synthesized by the presented approach are considerably more realistic than alternative approaches. The results are shown in the supplementary video at https://youtu.be/0fhUJT21-bs

72. FeUdal Networks for Hierarchical Reinforcement Learning

977 citations

We introduce FeUdal Networks (FuNs): a novel architecture for hierarchical reinforcement learning. Our approach is inspired by the feudal reinforcement learning proposal of Dayan and Hinton, and gains power and efficacy by decoupling end-to-end learning across multiple levels -- allowing it to utilise different resolutions of time. Our framework employs a Manager module and a Worker module. The Manager operates at a lower temporal resolution and sets abstract goals which are conveyed to and enacted by the Worker. The Worker generates primitive actions at every tick of the environment. The decoupled structure of FuN conveys several benefits -- in addition to facilitating very long timescale credit assignment it also encourages the emergence of sub-policies associated with different goals set by the Manager. These properties allow FuN to dramatically outperform a strong baseline agent on tasks that involve long-term credit assignment or memorisation. We demonstrate the performance of our proposed system on a range of tasks from the ATARI suite and also from a 3D DeepMind Lab environment.

73. Emergence of Locomotion Behaviours in Rich Environments

976 citations

The reinforcement learning paradigm allows, in principle, for complex behaviours to be learned directly from simple reward signals. In practice, however, it is common to carefully hand-design the reward function to encourage a particular solution, or to derive it from demonstration data. In this paper explore how a rich environment can help to promote the learning of complex behavior. Specifically, we train agents in diverse environmental contexts, and find that this encourages the emergence of robust behaviours that perform well across a suite of tasks. We demonstrate this principle for locomotion -- behaviours that are known for their sensitivity to the choice of reward. We train several simulated bodies on a diverse set of challenging terrains and obstacles, using a simple reward function based on forward progress. Using a novel scalable variant of policy gradient reinforcement learning, our agents learn to run, jump, crouch and turn as required by the environment without explicit reward-based guidance. A visual depiction of highlights of the learned behavior can be viewed following https://youtu.be/hx_bgoTF7bs .

74. DeepStack: Expert-Level Artificial Intelligence in No-Limit Poker

958 citations

Artificial intelligence has seen several breakthroughs in recent years, with games often serving as milestones. A common feature of these games is that players have perfect information. Poker is the quintessential game of imperfect information, and a longstanding challenge problem in artificial intelligence. We introduce DeepStack, an algorithm for imperfect information settings. It combines recursive reasoning to handle information asymmetry, decomposition to focus computation on the relevant decision, and a form of intuition that is automatically learned from self-play using deep learning. In a study involving 44,000 hands of poker, DeepStack defeated with statistical significance professional poker players in heads-up no-limit Texas hold'em. The approach is theoretically sound and is shown to produce more difficult to exploit strategies than prior approaches.

75. Robust Adversarial Reinforcement Learning

958 citations

Deep neural networks coupled with fast simulation and improved computation have led to recent successes in the field of reinforcement learning (RL). However, most current RL-based approaches fail to generalize since: (a) the gap between simulation and real world is so large that policy-learning approaches fail to transfer; (b) even if policy learning is done in real world, the data scarcity leads to failed generalization from training to test scenarios (e.g., due to different friction or object masses). Inspired from H-infinity control methods, we note that both modeling errors and differences in training and test scenarios can be viewed as extra forces/disturbances in the system. This paper proposes the idea of robust adversarial reinforcement learning (RARL), where we train an agent to operate in the presence of a destabilizing adversary that applies disturbance forces to the system. The jointly trained adversary is reinforced -- that is, it learns an optimal destabilization policy. We formulate the policy learning as a zero-sum, minimax objective function. Extensive experiments in multiple environments (InvertedPendulum, HalfCheetah, Swimmer, Hopper and Walker2d) conclusively demonstrate that our method (a) improves training stability; (b) is robust to differences in training/test conditions; and c) outperform the baseline even in the absence of the adversary.

76. Evolving Deep Neural Networks

931 citations

The success of deep learning depends on finding an architecture to fit the task. As deep learning has scaled up to more challenging tasks, the architectures have become difficult to design by hand. This paper proposes an automated method, CoDeepNEAT, for optimizing deep learning architectures through evolution. By extending existing neuroevolution methods to topology, components, and hyperparameters, this method achieves results comparable to best human designs in standard benchmarks in object recognition and language modeling. It also supports building a real-world application of automated image captioning on a magazine website. Given the anticipated increases in available computing power, evolution of deep networks is promising approach to constructing deep learning applications in the future.

77. Learned in Translation: Contextualized Word Vectors

931 citations

Computer vision has benefited from initializing multiple deep layers with weights pretrained on large supervised training sets like ImageNet. Natural language processing (NLP) typically sees initialization of only the lowest layer of deep models with pretrained word vectors. In this paper, we use a deep LSTM encoder from an attentional sequence-to-sequence model trained for machine translation (MT) to contextualize word vectors. We show that adding these context vectors (CoVe) improves performance over using only unsupervised word and character vectors on a wide variety of common NLP tasks: sentiment analysis (SST, IMDb), question classification (TREC), entailment (SNLI), and question answering (SQuAD). For fine-grained sentiment analysis and entailment, CoVe improves performance of our baseline models to the state of the art.

78. StarCraft II: A New Challenge for Reinforcement Learning

929 citations

This paper introduces SC2LE (StarCraft II Learning Environment), a reinforcement learning environment based on the StarCraft II game. This domain poses a new grand challenge for reinforcement learning, representing a more difficult class of problems than considered in most prior work. It is a multi-agent problem with multiple players interacting; there is imperfect information due to a partially observed map; it has a large action space involving the selection and control of hundreds of units; it has a large state space that must be observed solely from raw input feature planes; and it has delayed credit assignment requiring long-term strategies over thousands of steps. We describe the observation, action, and reward specification for the StarCraft II domain and provide an open source Python-based interface for communicating with the game engine. In addition to the main game maps, we provide a suite of mini-games focusing on different elements of StarCraft II gameplay. For the main game maps, we also provide an accompanying dataset of game replay data from human expert players. We give initial baseline results for neural networks trained from this data to predict game outcomes and player actions. Finally, we present initial baseline results for canonical deep reinforcement learning agents applied to the StarCraft II domain. On the mini-games, these agents learn to achieve a level of play that is comparable to a novice player. However, when trained on the main game, these agents are unable to make significant progress. Thus, SC2LE offers a new and challenging environment for exploring deep reinforcement learning algorithms and architectures.

79. Safe Model-based Reinforcement Learning with Stability Guarantees

916 citations

Reinforcement learning is a powerful paradigm for learning optimal policies from experimental data. However, to find optimal policies, most reinforcement learning algorithms explore all possible actions, which may be harmful for real-world systems. As a consequence, learning algorithms are rarely applied on safety-critical systems in the real world. In this paper, we present a learning algorithm that explicitly considers safety, defined in terms of stability guarantees. Specifically, we extend control-theoretic results on Lyapunov stability verification and show how to use statistical models of the dynamics to obtain high-performance control policies with provable stability certificates. Moreover, under additional regularity assumptions in terms of a Gaussian process prior, we prove that one can effectively and safely collect data in order to learn about the dynamics and thus both improve control performance and expand the safe region of the state space. In our experiments, we show how the resulting algorithm can safely optimize a neural network policy on a simulated inverted pendulum, without the pendulum ever falling down.

80. The NarrativeQA Reading Comprehension Challenge

900 citations

Reading comprehension (RC)---in contrast to information retrieval---requires integrating information and reasoning about events, entities, and their relations across a full document. Question answering is conventionally used to assess RC ability, in both artificial agents and children learning to read. However, existing RC datasets and tasks are dominated by questions that can be solved by selecting answers using superficial information (e.g., local context similarity or global term frequency); they thus fail to test for the essential integrative aspect of RC. To encourage progress on deeper comprehension of language, we present a new dataset and set of tasks in which the reader must answer questions about stories by reading entire books or movie scripts. These tasks are designed so that successfully answering their questions requires understanding the underlying narrative rather than relying on shallow pattern matching or salience. We show that although humans solve the tasks easily, standard RC models struggle on the tasks presented here. We provide an analysis of the dataset and the challenges it presents.

81. Building machines that adapt and compute like brains

872 citations

Building machines that learn and think like humans is essential not only for cognitive science, but also for computational neuroscience, whose ultimate goal is to understand how cognition is implemented in biological brains. A new cognitive computational neuroscience should build cognitive-level and neural- level models, understand their relationships, and test both types of models with both brain and behavioral data.

82. Autonomous development and learning in artificial intelligence and robotics: Scaling up deep learning to human--like learning

872 citations

Autonomous lifelong development and learning is a fundamental capability of humans, differentiating them from current deep learning systems. However, other branches of artificial intelligence have designed crucial ingredients towards autonomous learning: curiosity and intrinsic motivation, social learning and natural interaction with peers, and embodiment. These mechanisms guide exploration and autonomous choice of goals, and integrating them with deep learning opens stimulating perspectives. Deep learning (DL) approaches made great advances in artificial intelligence, but are still far away from human learning. As argued convincingly by Lake et al., differences include human capabilities to learn causal models of the world from very little data, leveraging compositional representations and priors like intuitive physics and psychology. However, there are other fundamental differences between current DL systems and human learning, as well as technical ingredients to fill this gap, that are either superficially, or not adequately, discussed by Lake et al. These fundamental mechanisms relate to autonomous development and learning. They are bound to play a central role in artificial intelligence in the future. Current DL systems require engineers to manually specify a task-specific objective function for every new task, and learn through off-line processing of large training databases. On the contrary, humans learn autonomously open-ended repertoires of skills, deciding for themselves which goals to pursue or value, and which skills to explore, driven by intrinsic motivation/curiosity and social learning through natural interaction with peers. Such learning processes are incremental, online, and progressive. Human child development involves a progressive increase of complexity in a curriculum of learning where skills are explored, acquired, and built on each other, through particular ordering and timing. Finally, human learning happens in the physical world, and through bodily and physical experimentation, under severe constraints on energy, time, and computational resources. In the two last decades, the field of Developmental and Cognitive Robotics (Cangelosi and Schlesinger, 2015, Asada et al., 2009), in strong interaction with developmental psychology and neuroscience, has achieved significant advances in computational

83. Distributional Reinforcement Learning with Quantile Regression

869 citations

In reinforcement learning an agent interacts with the environment by taking actions and observing the next state and reward. When sampled probabilistically, these state transitions, rewards, and actions can all induce randomness in the observed long-term return. Traditionally, reinforcement learning algorithms average over this randomness to estimate the value function. In this paper, we build on recent work advocating a distributional approach to reinforcement learning in which the distribution over returns is modeled explicitly instead of only estimating the mean. That is, we examine methods of learning the value distribution instead of the value function. We give results that close a number of gaps between the theoretical and algorithmic results given by Bellemare, Dabney, and Munos (2017). First, we extend existing results to the approximate distribution setting. Second, we present a novel distributional reinforcement learning algorithm consistent with our theoretical formulation. Finally, we evaluate this new algorithm on the Atari 2600 games, observing that it significantly outperforms many of the recent improvements on DQN, including the related distributional algorithm C51.

84. Survey of the State of the Art in Natural Language Generation: Core tasks, applications and evaluation

869 citations

This paper surveys the current state of the art in Natural Language Generation (NLG), defined as the task of generating text or speech from non-linguistic input. A survey of NLG is timely in view of the changes that the field has undergone over the past decade or so, especially in relation to new (usually data-driven) methods, as well as new applications of NLG technology. This survey therefore aims to (a) give an up-to-date synthesis of research on the core tasks in NLG and the architectures adopted in which such tasks are organised; (b) highlight a number of relatively recent research topics that have arisen partly as a result of growing synergies between NLG and other areas of artificial intelligence; (c) draw attention to the challenges in NLG evaluation, relating them to similar challenges faced in other areas of Natural Language Processing, with an emphasis on different evaluation methods and the relationships between them.

85. Program Induction by Rationale Generation : Learning to Solve and Explain Algebraic Word Problems

857 citations

Solving algebraic word problems requires executing a series of arithmetic operations---a program---to obtain a final answer. However, since programs can be arbitrarily complicated, inducing them directly from question-answer pairs is a formidable challenge. To make this task more feasible, we solve these problems by generating answer rationales, sequences of natural language and human-readable mathematical expressions that derive the final answer through a series of small steps. Although rationales do not explicitly specify programs, they provide a scaffolding for their structure via intermediate milestones. To evaluate our approach, we have created a new 100,000-sample dataset of questions, answers and rationales. Experimental results show that indirect supervision of program learning via answer rationales is a promising strategy for inducing arithmetic programs.

86. Learning to Represent Programs with Graphs

857 citations

Learning tasks on source code (i.e., formal languages) have been considered recently, but most work has tried to transfer natural language methods and does not capitalize on the unique opportunities offered by code's known syntax. For example, long-range dependencies induced by using the same variable or function in distant locations are often not considered. We propose to use graphs to represent both the syntactic and semantic structure of code and use graph-based deep learning methods to learn to reason over program structures. In this work, we present how to construct graphs from source code and how to scale Gated Graph Neural Networks training to such large graphs. We evaluate our method on two tasks: VarNaming, in which a network attempts to predict the name of a variable given its usage, and VarMisuse, in which the network learns to reason about selecting the correct variable that should be used at a given program location. Our comparison to methods that use less structured program representations shows the advantages of modeling known structure, and suggests that our models learn to infer meaningful names and to solve the VarMisuse task in many cases. Additionally, our testing showed that VarMisuse identifies a number of bugs in mature open-source projects.

87. Overcoming Exploration in Reinforcement Learning with Demonstrations

848 citations

Exploration in environments with sparse rewards has been a persistent problem in reinforcement learning (RL). Many tasks are natural to specify with a sparse reward, and manually shaping a reward function can result in suboptimal performance. However, finding a non-zero reward is exponentially more difficult with increasing task horizon or action dimensionality. This puts many real-world tasks out of practical reach of RL methods. In this work, we use demonstrations to overcome the exploration problem and successfully learn to perform long-horizon, multi-step robotics tasks with continuous control such as stacking blocks with a robot arm. Our method, which builds on top of Deep Deterministic Policy Gradients and Hindsight Experience Replay, provides an order of magnitude of speedup over RL on simulated robotics tasks. It is simple to implement and makes only the additional assumption that we can collect a small set of demonstrations. Furthermore, our method is able to solve tasks not solvable by either RL or behavior cloning alone, and often ends up outperforming the demonstrator policy.

88. Parseval Networks: Improving Robustness to Adversarial Examples

842 citations

We introduce Parseval networks, a form of deep neural networks in which the Lipschitz constant of linear, convolutional and aggregation layers is constrained to be smaller than 1. Parseval networks are empirically and theoretically motivated by an analysis of the robustness of the predictions made by deep neural networks when their input is subject to an adversarial perturbation. The most important feature of Parseval networks is to maintain weight matrices of linear and convolutional layers to be (approximately) Parseval tight frames, which are extensions of orthogonal matrices to non-square matrices. We describe how these constraints can be maintained efficiently during SGD. We show that Parseval networks match the state-of-the-art in terms of accuracy on CIFAR-10/100 and Street View House Numbers (SVHN) while being more robust than their vanilla counterpart against adversarial examples. Incidentally, Parseval networks also tend to train faster and make a better usage of the full capacity of the networks.

89. Deep Learning to Improve Breast Cancer Early Detection on Screening Mammography

842 citations

The rapid development of deep learning, a family of machine learning techniques, has spurred much interest in its application to medical imaging problems. Here, we develop a deep learning algorithm that can accurately detect breast cancer on screening mammograms using an "end-to-end" training approach that efficiently leverages training datasets with either complete clinical annotation or only the cancer status (label) of the whole image. In this approach, lesion annotations are required only in the initial training stage, and subsequent stages require only image-level labels, eliminating the reliance on rarely available lesion annotations. Our all convolutional network method for classifying screening mammograms attained excellent performance in comparison with previous methods. On an independent test set of digitized film mammograms from Digital Database for Screening Mammography (DDSM), the best single model achieved a per-image AUC of 0.88, and four-model averaging improved the AUC to 0.91 (sensitivity: 86.1%, specificity: 80.1%). On a validation set of full-field digital mammography (FFDM) images from the INbreast database, the best single model achieved a per-image AUC of 0.95, and four-model averaging improved the AUC to 0.98 (sensitivity: 86.7%, specificity: 96.1%). We also demonstrate that a whole image classifier trained using our end-to-end approach on the DDSM digitized film mammograms can be transferred to INbreast FFDM images using only a subset of the INbreast data for fine-tuning and without further reliance on the availability of lesion annotations. These findings show that automatic deep learning methods can be readily trained to attain high accuracy on heterogeneous mammography platforms, and hold tremendous promise for improving clinical tools to reduce false positive and false negative screening mammography results.

90. Revisiting Distributed Synchronous SGD

832 citations

Distributed training of deep learning models on large-scale training data is typically conducted with asynchronous stochastic optimization to maximize the rate of updates, at the cost of additional noise introduced from asynchrony. In contrast, the synchronous approach is often thought to be impractical due to idle time wasted on waiting for straggling workers. We revisit these conventional beliefs in this paper, and examine the weaknesses of both approaches. We demonstrate that a third approach, synchronous optimization with backup workers, can avoid asynchronous noise while mitigating for the worst stragglers. Our approach is empirically validated and shown to converge faster and to better test accuracies.

91. graph2vec: Learning Distributed Representations of Graphs

832 citations

Recent works on representation learning for graph structured data predominantly focus on learning distributed representations of graph substructures such as nodes and subgraphs. However, many graph analytics tasks such as graph classification and clustering require representing entire graphs as fixed length feature vectors. While the aforementioned approaches are naturally unequipped to learn such representations, graph kernels remain as the most effective way of obtaining them. However, these graph kernels use handcrafted features (e.g., shortest paths, graphlets, etc.) and hence are hampered by problems such as poor generalization. To address this limitation, in this work, we propose a neural embedding framework named graph2vec to learn data-driven distributed representations of arbitrary sized graphs. graph2vec's embeddings are learnt in an unsupervised manner and are task agnostic. Hence, they could be used for any downstream task such as graph classification, clustering and even seeding supervised representation learning approaches. Our experiments on several benchmark and large real-world datasets show that graph2vec achieves significant improvements in classification and clustering accuracies over substructure representation learning approaches and are competitive with state-of-the-art graph kernels.

92. Bilateral Multi-Perspective Matching for Natural Language Sentences

830 citations

Natural language sentence matching is a fundamental technology for a variety of tasks. Previous approaches either match sentences from a single direction or only apply single granular (word-by-word or sentence-by-sentence) matching. In this work, we propose a bilateral multi-perspective matching (BiMPM) model under the "matching-aggregation" framework. Given two sentences $P$ and $Q$, our model first encodes them with a BiLSTM encoder. Next, we match the two encoded sentences in two directions $P \rightarrow Q$ and $P \leftarrow Q$. In each matching direction, each time step of one sentence is matched against all time-steps of the other sentence from multiple perspectives. Then, another BiLSTM layer is utilized to aggregate the matching results into a fix-length matching vector. Finally, based on the matching vector, the decision is made through a fully connected layer. We evaluate our model on three tasks: paraphrase identification, natural language inference and answer sentence selection. Experimental results on standard benchmark datasets show that our model achieves the state-of-the-art performance on all tasks.

93. Minimax Regret Bounds for Reinforcement Learning

820 citations

We consider the problem of provably optimal exploration in reinforcement learning for finite horizon MDPs. We show that an optimistic modification to value iteration achieves a regret bound of $\tilde{O}( \sqrt{HSAT} + H^2S^2A+H\sqrt{T})$ where $H$ is the time horizon, $S$ the number of states, $A$ the number of actions and $T$ the number of time-steps. This result improves over the best previous known bound $\tilde{O}(HS \sqrt{AT})$ achieved by the UCRL2 algorithm of Jaksch et al., 2010. The key significance of our new results is that when $T\geq H^3S^3A$ and $SA\geq H$, it leads to a regret of $\tilde{O}(\sqrt{HSAT})$ that matches the established lower bound of $\Omega(\sqrt{HSAT})$ up to a logarithmic factor. Our analysis contains two key insights. We use careful application of concentration inequalities to the optimal value function as a whole, rather than to the transitions probabilities (to improve scaling in $S$), and we define Bernstein-based "exploration bonuses" that use the empirical variance of the estimated values at the next states (to improve scaling in $H$).

94. Measuring Catastrophic Forgetting in Neural Networks

813 citations

Deep neural networks are used in many state-of-the-art systems for machine perception. Once a network is trained to do a specific task, e.g., bird classification, it cannot easily be trained to do new tasks, e.g., incrementally learning to recognize additional bird species or learning an entirely different task such as flower recognition. When new tasks are added, typical deep neural networks are prone to catastrophically forgetting previous tasks. Networks that are capable of assimilating new information incrementally, much like how humans form new memories over time, will be more efficient than re-training the model from scratch each time a new task needs to be learned. There have been multiple attempts to develop schemes that mitigate catastrophic forgetting, but these methods have not been directly compared, the tests used to evaluate them vary considerably, and these methods have only been evaluated on small-scale problems (e.g., MNIST). In this paper, we introduce new metrics and benchmarks for directly comparing five different mechanisms designed to mitigate catastrophic forgetting in neural networks: regularization, ensembling, rehearsal, dual-memory, and sparse-coding. Our experiments on real-world images and sounds show that the mechanism(s) that are critical for optimal performance vary based on the incremental training paradigm and type of data being used, but they all demonstrate that the catastrophic forgetting problem has yet to be solved.

95. DeepPath: A Reinforcement Learning Method for Knowledge Graph Reasoning

796 citations

We study the problem of learning to reason in large scale knowledge graphs (KGs). More specifically, we describe a novel reinforcement learning framework for learning multi-hop relational paths: we use a policy-based agent with continuous states based on knowledge graph embeddings, which reasons in a KG vector space by sampling the most promising relation to extend its path. In contrast to prior work, our approach includes a reward function that takes the accuracy, diversity, and efficiency into consideration. Experimentally, we show that our proposed method outperforms a path-ranking based algorithm and knowledge graph embedding methods on Freebase and Never-Ending Language Learning datasets.

96. Unsupervised Neural Machine Translation

791 citations

In spite of the recent success of neural machine translation (NMT) in standard benchmarks, the lack of large parallel corpora poses a major practical problem for many language pairs. There have been several proposals to alleviate this issue with, for instance, triangulation and semi-supervised learning techniques, but they still require a strong cross-lingual signal. In this work, we completely remove the need of parallel data and propose a novel method to train an NMT system in a completely unsupervised manner, relying on nothing but monolingual corpora. Our model builds upon the recent work on unsupervised embedding mappings, and consists of a slightly modified attentional encoder-decoder model that can be trained on monolingual corpora alone using a combination of denoising and backtranslation. Despite the simplicity of the approach, our system obtains 15.56 and 10.21 BLEU points in WMT 2014 French-to-English and German-to-English translation. The model can also profit from small parallel corpora, and attains 21.81 and 15.24 points when combined with 100,000 parallel sentences, respectively. Our implementation is released as an open source project.

97. What do we need to build explainable AI systems for the medical domain?

788 citations

Artificial intelligence (AI) generally and machine learning (ML) specifically demonstrate impressive practical success in many different application domains, e.g. in autonomous driving, speech recognition, or recommender systems. Deep learning approaches, trained on extremely large data sets or using reinforcement learning methods have even exceeded human performance in visual tasks, particularly on playing games such as Atari, or mastering the game of Go. Even in the medical domain there are remarkable results. The central problem of such models is that they are regarded as black-box models and even if we understand the underlying mathematical principles, they lack an explicit declarative knowledge representation, hence have difficulty in generating the underlying explanatory structures. This calls for systems enabling to make decisions transparent, understandable and explainable. A huge motivation for our approach are rising legal and privacy aspects. The new European General Data Protection Regulation entering into force on May 25th 2018, will make black-box approaches difficult to use in business. This does not imply a ban on automatic learning approaches or an obligation to explain everything all the time, however, there must be a possibility to make the results re-traceable on demand. In this paper we outline some of our research topics in the context of the relatively new area of explainable-AI with a focus on the application in medicine, which is a very special domain. This is due to the fact that medical professionals are working mostly with distributed heterogeneous and complex sources of data. In this paper we concentrate on three sources: images, *omics data and text. We argue that research in explainable-AI would generally help to facilitate the implementation of AI/ML in the medical domain, and specifically help to facilitate transparency and trust.

98. On a Formal Model of Safe and Scalable Self-driving Cars

778 citations

In recent years, car makers and tech companies have been racing towards self driving cars. It seems that the main parameter in this race is who will have the first car on the road. The goal of this paper is to add to the equation two additional crucial parameters. The first is standardization of safety assurance --- what are the minimal requirements that every self-driving car must satisfy, and how can we verify these requirements. The second parameter is scalability --- engineering solutions that lead to unleashed costs will not scale to millions of cars, which will push interest in this field into a niche academic corner, and drive the entire field into a "winter of autonomous driving". In the first part of the paper we propose a white-box, interpretable, mathematical model for safety assurance, which we call Responsibility-Sensitive Safety (RSS). In the second part we describe a design of a system that adheres to our safety assurance requirements and is scalable to millions of cars.

99. Learning Discourse-level Diversity for Neural Dialog Models using Conditional Variational Autoencoders

773 citations

While recent neural encoder-decoder models have shown great promise in modeling open-domain conversations, they often generate dull and generic responses. Unlike past work that has focused on diversifying the output of the decoder at word-level to alleviate this problem, we present a novel framework based on conditional variational autoencoders that captures the discourse-level diversity in the encoder. Our model uses latent variables to learn a distribution over potential conversational intents and generates diverse responses using only greedy decoders. We have further developed a novel variant that is integrated with linguistic prior knowledge for better performance. Finally, the training procedure is improved by introducing a bag-of-word loss. Our proposed models have been validated to generate significantly more diverse responses than baseline approaches and exhibit competence in discourse-level decision-making.

100. DiSAN: Directional Self-Attention Network for RNN/CNN-Free Language Understanding

771 citations

Recurrent neural nets (RNN) and convolutional neural nets (CNN) are widely used on NLP tasks to capture the long-term and local dependencies, respectively. Attention mechanisms have recently attracted enormous interest due to their highly parallelizable computation, significantly less training time, and flexibility in modeling dependencies. We propose a novel attention mechanism in which the attention between elements from input sequence(s) is directional and multi-dimensional (i.e., feature-wise). A light-weight neural net, "Directional Self-Attention Network (DiSAN)", is then proposed to learn sentence embedding, based solely on the proposed attention without any RNN/CNN structure. DiSAN is only composed of a directional self-attention with temporal order encoded, followed by a multi-dimensional attention that compresses the sequence into a vector representation. Despite its simple form, DiSAN outperforms complicated RNN models on both prediction quality and time efficiency. It achieves the best test accuracy among all sentence encoding methods and improves the most recent best result by 1.02% on the Stanford Natural Language Inference (SNLI) dataset, and shows state-of-the-art test accuracy on the Stanford Sentiment Treebank (SST), Multi-Genre natural language inference (MultiNLI), Sentences Involving Compositional Knowledge (SICK), Customer Review, MPQA, TREC question-type classification and Subjectivity (SUBJ) datasets.